Country websites:


The medical device and therapy related information on this website is aimed exclusively at healthcare professionals.

Not all products are cleared or available for sale in all countries.

By clicking on the button "Accepted and Confirmed" you assure that you have taken note of this information and that you are a healthcare professional.

What are the benefits of Ultralow GDPs and neutral pH PD fluids?

  • UltraLow GDP (Glucose Degradation Products) PD fluids and their associated biocompatible advantages2,3
  • Less peritonitis-associated hospitalization duration and reduced peritonitis rate4
  • Better patient survival1
  • Versatile product and portfolio application systems5


Minimize GDP-related complications

Why is it so important to limit GDP exposure?

GDPs exhibit local and systemic adverse effects. That’s why it is also important to limit GDP exposure upon the initiation of therapy.1


From the beginning, UltraLow GDP fluids help to alleviate important clinical problems, such as peritoneal membrane changes, declining peritoneal ultrafiltration and residual renal function as well as infection.4,14,15


The balANZ study: clear advantages for your patients

Preservation of membrane integrity

Less peritonitis-associated hospitalization duration

RRF- longer time to anuria


PD fluids with lowest GDP levels – only from Fresenius Medical Care

Prescribing Information

Related content

1 Lee H.Y. et al., Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation concentration (balance), Perit Dial Int (2005); 25(3): 248-255.
2 Johnson D. et al., balANZ Trial Investigators, Effects of biocompatible versus standard fluid on peritoneal dialysis outcomes, J Am Soc Nephrol (2012); 23(6): 1097-107.
3 Cho Y. et al., Biocompatible dialysis fluids for peritoneal dialysis, Cochrane Database Syst Rev (2014); Mar 27: (3).
4 Johnson D. et al., balANZ Trial Investigators, The effects of biocompatible compared with standard peritoneal dialysis solutions on peritonitis microbiology, treatment, and outcomes: the balanz trial, Perit Dial Int (2012); 32(5): 497-506.
5 Summary of Product Characteristics balance.
6 Niwa H. et al., Accelerated formation of N epsilon- (carboxymethyl) lysine, an advanced glycation end product, by glyoxal and 3-deoxyglucosone in cultured rat sensory neurons, Biochem Biophys Res Commun (1998); 248: 93-7.
7 Schalkwijk C.G. et al., Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids, Perit Dial Int (1999); 19: 325-333.
8 Witowski J. et al., Prolonged exposure to glucose degradation products impairs viability and function of human peritoneal mesothelial cells, J Am Soc Nephrol (2001); 12(11): 2434-41.
9 Lamb E.J. et al., In vitro formation of advanced glycation end products in peritoneal dialysis fluid, Kidney Int (1995); 47: 1768-1774.
10 Schwenger V. et al., Damage to the peritoneal membrane by glucose degradation products is mediated by the receptor for advanced glycation end-products, J Am Soc Nephrol (2006); 17(1): 199-207.
11 Honda K. et al., Accumulation of advanced glycation end products in the peritoneal vasculature of continuous ambulatory peritoneal dialysis patients with low ultra-filtration, Nephrol Dial Transplant (1999); 14(6): 1541-9.
12 Blake PG, Balance about Balanz. Perit Dial Int (2012); 32: 493-496.
13 Frischmann M. et al., Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids, Biomed Chromatogr (2009); 23: 843-851.
14 Kim S. et al., Benefits of biocompatible PD fluid for preservation of residual renal function in incident CAPD patients: a 1-year study, Nephrol Dial Transplant (2009); 24(9): 2899-908.
15 Johnson D. et al., balANZ Trial Investigators, The effect of low glucose degradation product, neutral pH versus standard peritoneal dialysis solutions on peritoneal membrane function: the balANZ trial, Nephrol Dial Transplant (2012); 27(12): 4445-53.
16 Wang A.Y.M. et al., The importance of residual renal function in dialysis patients, Kidney Int (2006); 69: 1726-1732.
17 Williams J.D. et al., Euro Balance Trial Group, The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane, Kidney Int (2004); 66(1): 408-18.
18 Henderson I.S. et al., Potentially Irritant Glucose Metabolites in Unused CAPD Fluid, in Frontiers in Peritoneal Dialysis, (1985), edited by Maher JF, Winchester JF, New York, Field, Rich, 261–264.
19 Szeto C.C. et al., Clinical biocompatibility of a neutral peritoneal dialysis solution with minimal glucose-degradation products – A 1-year randomized control trial, Nephrol Dial Transplant (2007); 22: 552-559.
20 Furkert J. et al., Effects of peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates, Perit Dial Int (2008); 28(6): 637-40.
21 Nakayama M. et al., Immunohistochemical detection of advanced glycosylation end-products in the peritoneum and its possible pathophysiological role in CAPD, Kidney Int (1997); 51(1): 182-6.
22 Müller-Krebs S. et al., Renal toxicity mediated by glucose degradation products in a rat model of advanced renal failure, Eur J Clin Invest (2008); 38(5): 296-305.
23 Müller-Krebs S. et al., Glucose degradation products result in cardiovascular toxicity in a rat model of renal failure, Perit Dial Int. (2010); 30(1): 35-40.
24 Zheng Z.H. et al., Heat sterilization of peritoneal dialysis solutions influences ingestive behavior in non-uremic rats, Kidney Int (2002); 62(4): 1447-53.