Skip to content

FX Dialyzers — Blue makes a difference

Doctor – medical outcomes quote for FX Dialyzers

"Small details can make a big difference in medical outcomes."

FX Dialyzers

Why FX Dialyzers make a difference

FX Dialyzers have been used in more than 500 million treatments worldwide. As the world’s leading provider of dialysis products, Fresenius Medical Care aims to make a difference — for patients and healthcare professionals.

Continuous innovation combined with our commitment to the highest level of quality standards, ensure that our FX Dialyzers portfolio is built to address the individual needs of patients.

FX portfolio

All FX Dialyzers have the capacity to remove a broad range of uremic toxins, effectively retain endotoxins, and provide intrinsic biocompatibility.1

FX CorDiax dialyzer

FX CorDiax

Designed to dialyze, built for cardioprotection

The FX CorDiax dialyzers feature the advanced Helixone® plus membrane, enabling the enhanced removal of larger uremic toxins, such as β2-microglobulin and myoglobin.2,3 At the same time, it restricts the loss of albumin, which is of clinical concern and a safety issue in hemodialysis.4

FX CorDiax high-flux dialyzers or hemodiafilters facilitate beneficial therapy outcomes.

FX classix dialyzer

FX classix

High-flux dialyzers for improved patient outcomes

The FX classix dialyzers, featuring the original Helixone® membrane, target at an efficient removal of a broad range of uraemic toxins with high endotoxin retention characteristics.5,6

FX classix dialyzers provide high-flux hemodialysis therapy to improve clinical outcomes in patients in comparison to low-flux hemodialysis.7 

FX paed dialyzer

FX paed

High-flux dialyzer for paediatric treatments

The FX paed dialyzer enables high-flux hemodialysis therapy ideally suited for the special needs of pediatric patients. It features the original Helixone® membrane, which targets at an efficient removal of a broad range of uremic toxins, with minimum albumin losses and high endotoxin-retaining characteristics.8

FX low-flux dialyzer

FX low-flux

Advanced design for low-flux dialysis

The removal of uremic toxins and excessive water is the fundamental goal of the hemodialysis treatment. Due to the beneficial properties of the Helixone® low-flux membrane combined with its advanced product design, the FX low-flux dialyzers offer adequate performance.9

Nurse - treatment quote for FX Dialyzers

A smooth treatment is the difference that allows us to focus more on the patient.

Two FX-Dialyzers on side

FX properties that make a difference

Several state-of-the-art technologies have been combined to create the distinctive functional properties of the FX Dialyzers. Together they make a difference in terms of beneficial patient outcomes, smooth handling and cost savings potential.

FX Dialyzers cap

Smooth handling

The blue header with its laterally placed blood inlet port is designed to reduce the risk of kinked bloodlines, aiming at smooth handling and allowing healthcare professionals to focus on what really matters — the best care for patients.

Simplified workflows

The FX Dialyzers are developed for system compatibility, perfectly fitting into automatic priming procedures with low rinsing volumes and short preparation times. In addition, there is no need to turn any FX Dialyzer during the priming procedure. Moreover, the FX Dialyzers have a removable label that can easily be attached to patient records, allowing for quick documentation.

Simplified workflows, user-friendly handling and short preparation time support the nursing staff’s daily work — freeing up resources to focus more on patients.

FX Dialyzers fiber architecture

Improved clearances

Fresenius Medical Care’s Nano Controlled Spinning (NCS™) technology creates fibers with a highly defined membrane architecture. Precise nanoscale modulation of pore size, structure and distribution favors minimal resistance to solute transfer across the membrane and contributes to improved clearances compared to macro-design membranes.10,11

Additionally, the microwave fiber structure enables the homogenous distribution of dialysis fluid, supported by the inner housing’s pinnacle design of the FX Dialyzers. It prevents the channelling of the dialysis fluid and ensures that each fiber within the bundle is perfectly surrounded by the dialysis fluid.11,12,13

FX Dialyzers - Header

Enhanced performance

The optimized header design of the FX Dialyzers ensures a homogenous blood flow path. Its geometry allows a spiral distribution of blood in the dialyzer header, preventing low velocity stagnation zones and resulting in an enhanced performance.11

FX Dialyzers performance

Setting the standard

Each FX Dialyzer is individually sterilized by the unique INLINE steam sterilization method. Both the blood and the dialysate compartments of the dialyzer are rinsed continuously with steam at a minimum temperature of 121° C, followed by sterile water and sterile air.

Rinsing with hot steam assures a gentle sterilization — without the need for chemicals or irradiation, which may lead to increased cytotoxic14 and carcinogenic residuals.15,16

Optimal use of resources

The INLINE steam sterilization process allows for the efficient use of resources during preparation as well as a reduction of costs, since only 500 mL rinsing volume is required. The process

  • includes a 100% fiber integrity test, aimed at minimizing the risk of blood leakages due to fiber ruptures
  • ensures that all FX Dialyzers are already pre-rinsed and ready to use upon arrival, resulting in short rinsing time and low rinsing volumes.
     

Best choice for high biocompatibility

Cytotoxicity is minimal after steam sterilization, whereas it increases with gamma irradiation.14 Studies have shown that with steam sterilized dialyzer membranes, less oxidative stress is induced to the patient’s blood compared to gamma sterilization.17,18,19

Performance characteristics remain intact

Changes of the material properties can be observed after sterilization with gamma irradiation, while the material remains intact in this respect when using steam sterilization.20

Increased losses of albumin during dialysis sessions have been observed with gamma sterilized dialyzers which were stored for a longer time.14,21

Adding value across the entire life cycle

Fresenius Medical Care has implemented an approach based on the Life Cycle Assessment (LCA) methodology, which follows the structure and requirements of EN ISO 14040/44: 2006:

  • Comprehensive assessment of a product’s environmental impact across its full life cycle, from materials supply to manufacturing, distribution, use and final disposal
  • Identification of improvement opportunities through environmentally sound processes, materials and design choices.
     

Lightweight material is essential for environmental sustainability

The advanced housing material of any FX Dialyzer is made of environmentally friendly and lightweight polypropylene. Due to the advanced material, FX Dialyzers up to 50% lighter (before treatment) than dialyzers made of polycarbonate22 
This may result in improved end-of-life management by producing less waste23 and contributing to cost savings.

Improved eco-performance

Across 15 environmental impact categories24, the overall eco-performance of an FX Dialyzer (FX classix 80) is notably better — on average by 42 % — compared to a reference dialyzer made from polycarbonate (HF 80S).25

Patient - treatment quote for FX Dialyzers

The difference is feeling confident throughout the entire treatment.

FX blue art project

Dialyzers are life-saving pieces of medical and technological art. The advanced design of the FX Dialyzers adds a dimension that reflects the thought, care and quality that went into its construction. As the most prominent visible characteristic, the color blue of the FX Dialyzer caps became the inspiration point for our unique blue art project. We asked artists to interpret the benefits of the FX Dialyzers in their own way — be it figurative or abstract, poetic or surreal, two- or three-dimensional — with stunning results.

Each artist granted another level of meaning, a unique interpretation or a new perspective to apply to the distinctive functional properties of the FX Dialyzers. Warm and sensitive, intellectual and meaningful approaches came to life.

Art gallery

FX blue - artwork

Johannes Bruns

 

“Flow 1”, acrylic on canvas

The theme is the continuous flow of blood and life. The blue strap in the middle represents the uniform flow of blood and a continuously calm treatment. Dialysis is a life-giving stream that runs through the lives of those it affects. The abstract language of the form invites various interpretations.

FX blue - artwork

Svenja Nolte

 

“Running Waves”, acrylic

Emotions are in focus – this image should relax and convey peace. A combination of a variety of used cardboards and flowing blue tones. The image shows calmly lapping waves, symbolizing the microwave structure of the fibers.

FX blue - artwork

Robert Lichtenberg

 

“Flying Caps”, photography

The lightness and sustainability of the material is represented by floating caps, which were captured with a special lens that gives the image a feeling of immediate airiness and clarity.

FX blue - artwork

Jonas Goldmann

 

“Dynamic Spiral”, pouring technique

This image is about the radial distribution of blood in the dialyzer. With the pouring technique, colors are poured onto the undercoat and distributed over the surface by a swinging motion. The speed and dynamic of the flowing blood are at the center of this concept.

FX blue - artwork

David Apel

 

“Endless”, digital reproduction

A constantly repetitive process results in infinity. This shows the breadth and variety of possibilities that can arise from a single object – as demonstrated in the diverse FX dialyzers portfolio.

Hospital Head - treatment quote for FX Dialyzers

Reliability and experience make a difference when seeking the best solutions.

1 Wagner S. et al., Nephrology Dialysis Transplantation (2017); 32 (3): iii615.

2 Bock A. et al., J Am Soc Nephrol (2013); 24: SA-PO404.

3 Maduell F. et al., Blood Purif. (2014); 37(2): 125-130.

4 Lim P. S. et al., Artif Organs (2017); Nov 27. doi: 10.1111/aor.13011.

5 Schindler R. et al., Clin. Nephrology (2003); 59: 447–454.

6 Weber V. et al., Artif Organs (2004); 28(2): 210-217.

7 Chazot C. et al., Nephron (2015); 129: 269-275.

8 Tsai I.J. et al., Pediatr Nephrol (2014); 29: 111–116.

9 Data from Fresenius Medical Care Deutschland GmbH: Comparison clearance values F8 HPS (effective surface area 1.8 m2) versus FX 8 (effective surface area 1.4 m2).

10 Ronco C., Nissenson A. R., Blood Purif (2001); 19: 347-352.

11 Ronco C. et al., Kidney International (2002); 61 (80): 126-142.

12 Külz M. et al., Nephrol Dial Transplant (2002); 17: 1475-1479.

13 Mandolfo S. et al., The International Journal of Artificial Organs (2003); 26 (2): 113-120.

14 Allard B. et al., Le Pharmacien Hospitalier et Clinicien (2013); 48 (4): 15-21.

15 Shintani H., Biomedical instrumentation & technology (1995); 29 (6): 513–519.

16 Hirata N. et al., Radiation Physics and Chemistry (1995); 46 (3): 377–381.

17 Golli-Bennour E. E. et al., International urology and nephrology (2011); 43 (2): 483–490.

18 Azzabi A. et al., Néphrologie & Thérapeutique (2014); 10 (5): 318.

19 Golli-Bennour E.E et al., World J Nephrol Urol (2017); 6 (1-2): 14-17.

20 da Silva Aquino K. A., INtechOpen (2012); https://www.intechopen.com/books/gamma-radiation/sterilization-by-gamma-irradiation (27.04.2018).

21 Dawids S., Handlos V. N., Developments in hematology and immunology (1989); 347–368.

22 Unpublished data from Fresenius Medical Care Deutschland GmbH: Internal calculation based on weight measurements before treatment of FX Dialysers versus F-series dialysers.

23 Unpublished data from Fresenius Medical Care Deutschland GmbH: Internal calculation based on weight measurements of FME FX classix 80 versus FME HF 80S. The typical number of treatments in most clinics is approximately 10,000 per year; this results in about 1,600 kg less waste being produced annually with FX classix 80 when used on FME 5008 CorDiax machine.

24 EC-JRC-IES (2011): ILCD handbook – Recommendations for LCIA in the European context. Source: http://publications.jrc.ec.europa.eu/repository/handle/JRC61049 (all 15 environmental impact categories with recommendation in table 1 of this ILCD handbook have been evaluated).

25 Unpublished data from Fresenius Medical Care Deutschland GmbH internal study (2018): Comparative life cycle assessment of selected FME dialysers. Eco-performance is always calculated versus baseline product (FME HF 80S); long distance scenario illustrated.